沈阳机床 (000410.SZ) 截止 20251126,收盘价 7.46 元,最高 7.63 元,最低 7.42 元,最新 PE:2799 倍(最近一年百分位:90.08%),最新 PE‑TTM:150.33 倍(最近一年百分位:48.40%)
数据仅供参考,具体以交易所发布为准。
沈阳机床 (000410.SZ) PE-TTM 最新情况:
- 最新 PE-TTM 值: 150.33 (更新日期: 20251126)
- 标准差 (σ) 用途说明: 标准差衡量数据围绕平均值的分散程度。在此图表中:
- 约 68% 的数据点落在平均值 ±1σ 范围内。
- 约 95% 的数据点落在平均值 ±2σ 范围内。
- 约 99.7% 的数据点落在平均值 ±3σ 范围内。
- 通过观察当前 PE-TTM 值相对于这些标准差线的位置,可以判断其在历史数据中的相对高低。例如,值高于 +1σ 可能表示相对较高估,低于 -1σ 可能表示相对较低估。但这仅为参考,需结合其他因素分析。
智能估值评估
得分: 49.77 / 100,建议: Hold,置信度: 27.6%
最新PE-TTM 150.33,历史百分位 48.40% => 估值分 51.60;趋势分 54.77;波动分 30.18;增长分 50.00;质量分 50.00。
沈阳机床 (000410.SZ) PE-TTM 统计信息(最近一年)
| 当前值 | 最小值 | 最大值 | 平均值 | 当前百分位 |
|---|---|---|---|---|
| 150.33 | 0.00 | 1,071.17 | 417.86 | 48.4% |
沈阳机床 (000410.SZ) PE 统计信息(最近一年)
| 当前值 | 最小值 | 最大值 | 平均值 | 当前百分位 |
|---|---|---|---|---|
| 2,799.05 | 380.19 | 3,309.33 | 1,528.68 | 90.08% |
沈阳机床 (000410.SZ) 最近100个交易日数据
| 日期 | 收盘价 | 最高价 | 最低价 | PE | PE百分位 | PE-TTM | PE-TTM百分位 |
|---|---|---|---|---|---|---|---|
| 20251126 | 7.46 | 7.63 | 7.42 | 2,799.05 | 90.08% | 150.33 | 48.40% |
| 20251125 | 7.60 | 7.73 | 7.58 | 2,851.58 | 91.27% | 153.15 | 49.77% |
| 20251124 | 7.57 | 7.62 | 7.48 | 2,840.32 | 90.87% | 152.54 | 49.32% |
| 20251121 | 7.46 | 7.69 | 7.39 | 2,799.05 | 90.08% | 150.33 | 48.40% |
| 20251120 | 7.73 | 8.06 | 7.72 | 2,900.35 | 92.06% | 155.77 | 50.23% |
| 20251119 | 8.00 | 8.29 | 7.91 | 3,001.66 | 96.43% | 161.21 | 55.25% |
| 20251118 | 8.31 | 8.53 | 8.24 | 3,117.97 | 97.62% | 167.45 | 57.08% |
| 20251117 | 8.30 | 8.64 | 8.29 | 3,114.22 | 97.22% | 167.25 | 56.62% |
| 20251114 | 8.48 | 9.15 | 8.48 | 3,181.76 | 98.81% | 170.88 | 58.45% |
| 20251113 | 8.77 | 8.87 | 8.63 | 3,290.57 | 99.21% | 176.72 | 58.90% |
| 20251112 | 8.82 | 9.15 | 8.19 | 3,309.33 | 99.60% | 177.73 | 59.36% |
| 20251111 | 8.33 | 8.41 | 8.18 | 3,125.48 | 98.02% | 167.86 | 57.53% |
| 20251110 | 8.45 | 8.56 | 7.95 | 3,170.50 | 98.41% | 170.28 | 57.99% |
| 20251107 | 7.96 | 8.26 | 7.89 | 2,986.65 | 95.63% | 160.40 | 53.42% |
| 20251106 | 7.96 | 8.07 | 7.75 | 2,986.65 | 95.63% | 160.40 | 53.42% |
| 20251105 | 7.85 | 7.87 | 7.73 | 2,945.38 | 94.05% | 158.18 | 51.14% |
| 20251104 | 8.00 | 8.18 | 7.78 | 3,001.66 | 96.43% | 161.21 | 55.25% |
| 20251103 | 7.89 | 7.89 | 7.72 | 2,960.39 | 94.84% | 158.99 | 51.60% |
| 20251031 | 7.76 | 7.90 | 7.72 | 2,911.61 | 92.86% | 156.37 | 50.68% |
| 20251030 | 7.89 | 8.05 | 7.56 | 2,960.39 | 94.84% | 158.99 | 51.60% |
| 20251029 | 7.86 | 7.89 | 7.64 | 2,949.13 | 94.44% | 162.39 | 56.16% |
| 20251028 | 7.70 | 7.79 | 7.66 | 2,889.10 | 91.67% | 159.08 | 52.51% |
| 20251027 | 7.80 | 7.87 | 7.68 | 2,926.62 | 93.65% | 161.15 | 54.79% |
| 20251024 | 7.73 | 7.91 | 7.67 | 2,900.35 | 92.06% | 159.70 | 52.97% |
| 20251023 | 7.79 | 8.01 | 7.65 | 2,922.86 | 93.25% | 160.94 | 54.34% |
| 20251022 | 7.83 | 7.83 | 7.07 | 2,616.14 | 89.68% | 144.05 | 47.95% |
| 20251021 | 7.12 | 7.16 | 7.03 | 2,378.92 | 79.76% | 130.99 | 36.99% |
| 20251020 | 7.03 | 7.17 | 6.99 | 2,348.85 | 77.38% | 129.33 | 34.25% |
| 20251017 | 7.05 | 7.35 | 7.03 | 2,355.53 | 78.17% | 129.70 | 35.16% |
| 20251016 | 7.34 | 7.60 | 7.31 | 2,452.43 | 84.92% | 135.04 | 42.47% |
| 20251015 | 7.39 | 7.47 | 7.29 | 2,469.13 | 86.51% | 135.96 | 44.29% |
| 20251014 | 7.47 | 7.65 | 7.43 | 2,495.86 | 88.10% | 137.43 | 46.12% |
| 20251013 | 7.60 | 7.65 | 7.24 | 2,539.30 | 88.89% | 139.82 | 47.03% |
| 20251010 | 7.47 | 7.58 | 7.42 | 2,495.86 | 88.10% | 137.43 | 46.12% |
| 20251009 | 7.61 | 7.72 | 7.36 | 2,542.64 | 89.29% | 140.00 | 47.49% |
| 20250930 | 7.22 | 7.50 | 7.19 | 2,412.33 | 82.54% | 132.83 | 39.73% |
| 20250929 | 7.04 | 7.08 | 6.89 | 2,352.19 | 77.78% | 129.52 | 34.70% |
| 20250926 | 6.99 | 7.11 | 6.99 | 2,335.48 | 76.59% | 128.60 | 33.79% |
| 20250925 | 7.11 | 7.21 | 7.11 | 2,375.58 | 79.37% | 130.80 | 36.53% |
| 20250924 | 7.20 | 7.22 | 7.01 | 2,405.65 | 81.35% | 132.46 | 38.81% |
| 20250923 | 7.06 | 7.17 | 6.91 | 2,358.87 | 78.57% | 129.88 | 35.62% |
| 20250922 | 7.14 | 7.18 | 7.07 | 2,385.60 | 80.16% | 131.36 | 37.44% |
| 20250919 | 7.18 | 7.27 | 7.12 | 2,398.97 | 80.56% | 132.09 | 37.90% |
| 20250918 | 7.25 | 7.44 | 7.19 | 2,422.36 | 82.94% | 133.38 | 40.18% |
| 20250917 | 7.41 | 7.46 | 7.33 | 2,475.81 | 86.90% | 136.32 | 44.75% |
| 20250916 | 7.38 | 7.38 | 7.24 | 2,465.79 | 86.11% | 135.77 | 43.84% |
| 20250915 | 7.27 | 7.35 | 7.19 | 2,429.04 | 84.13% | 133.75 | 41.55% |
| 20250912 | 7.18 | 7.30 | 7.16 | 2,398.97 | 80.56% | 132.09 | 37.90% |
| 20250911 | 7.26 | 7.26 | 7.10 | 2,425.70 | 83.33% | 133.56 | 40.64% |
| 20250910 | 7.20 | 7.30 | 7.17 | 2,405.65 | 81.35% | 132.46 | 38.81% |
| 20250909 | 7.28 | 7.33 | 7.19 | 2,432.38 | 84.52% | 133.93 | 42.01% |
| 20250908 | 7.34 | 7.38 | 7.20 | 2,452.43 | 84.92% | 135.04 | 42.47% |
| 20250905 | 7.26 | 7.33 | 7.09 | 2,425.70 | 83.33% | 133.56 | 40.64% |
| 20250904 | 7.08 | 7.33 | 6.98 | 2,365.56 | 78.97% | 130.25 | 36.07% |
| 20250903 | 7.34 | 7.68 | 7.24 | 2,452.43 | 84.92% | 135.04 | 42.47% |
| 20250902 | 7.45 | 7.88 | 7.42 | 2,489.18 | 87.30% | 137.06 | 45.21% |
| 20250901 | 7.45 | 7.58 | 7.10 | 2,489.18 | 87.30% | 137.06 | 45.21% |
| 20250829 | 7.21 | 7.36 | 6.85 | 2,408.99 | 82.14% | 1,071.17 | 99.54% |
| 20250828 | 6.90 | 6.98 | 6.70 | 2,305.41 | 75.40% | 1,025.12 | 97.72% |
| 20250827 | 6.91 | 7.19 | 6.90 | 2,308.76 | 75.79% | 1,026.60 | 98.17% |
| 20250826 | 7.00 | 7.06 | 6.88 | 2,338.83 | 76.98% | 1,039.97 | 99.09% |
| 20250825 | 6.94 | 6.99 | 6.88 | 2,318.78 | 76.19% | 1,031.06 | 98.63% |
| 20250822 | 6.88 | 6.91 | 6.84 | 2,298.73 | 74.60% | 1,022.15 | 96.80% |
| 20250821 | 6.86 | 6.90 | 6.83 | 2,292.05 | 73.81% | 1,019.17 | 95.89% |
| 20250820 | 6.86 | 6.86 | 6.78 | 2,292.05 | 73.81% | 1,019.17 | 95.89% |
| 20250819 | 6.84 | 6.85 | 6.70 | 2,285.37 | 73.41% | 1,016.20 | 95.43% |
| 20250818 | 6.74 | 6.79 | 6.72 | 2,251.96 | 70.63% | 1,001.35 | 92.24% |
| 20250815 | 6.74 | 6.76 | 6.68 | 2,251.96 | 70.63% | 1,001.35 | 92.24% |
| 20250814 | 6.70 | 6.86 | 6.69 | 2,238.59 | 67.86% | 995.40 | 89.04% |
| 20250813 | 6.82 | 6.91 | 6.80 | 2,278.68 | 73.02% | 1,013.23 | 94.98% |
| 20250812 | 6.88 | 7.03 | 6.65 | 2,298.73 | 74.60% | 1,022.15 | 96.80% |
| 20250811 | 6.72 | 6.74 | 6.68 | 2,245.27 | 69.44% | 998.38 | 90.87% |
| 20250808 | 6.72 | 6.74 | 6.69 | 2,245.27 | 69.44% | 998.38 | 90.87% |
| 20250807 | 6.72 | 6.82 | 6.71 | 2,245.27 | 69.44% | 998.38 | 90.87% |
| 20250806 | 6.81 | 6.85 | 6.74 | 2,275.34 | 72.62% | 1,011.75 | 94.52% |
| 20250805 | 6.67 | 6.72 | 6.65 | 2,228.57 | 65.87% | 990.95 | 86.76% |
| 20250804 | 6.68 | 6.68 | 6.54 | 2,231.91 | 67.06% | 992.43 | 88.13% |
| 20250801 | 6.53 | 6.56 | 6.50 | 2,181.79 | 62.30% | 970.15 | 82.65% |
| 20250731 | 6.52 | 6.64 | 6.51 | 2,178.45 | 61.90% | 968.66 | 82.19% |
| 20250730 | 6.61 | 6.71 | 6.56 | 2,208.52 | 64.68% | 982.03 | 85.39% |
| 20250729 | 6.65 | 6.77 | 6.60 | 2,221.88 | 65.48% | 987.98 | 86.30% |
| 20250728 | 6.63 | 6.73 | 6.61 | 2,215.20 | 65.08% | 985.00 | 85.84% |
| 20250725 | 6.71 | 6.77 | 6.69 | 2,241.93 | 68.65% | 996.89 | 89.95% |
| 20250724 | 6.75 | 6.76 | 6.67 | 2,255.30 | 71.43% | 1,002.83 | 93.15% |
| 20250723 | 6.70 | 6.79 | 6.68 | 2,238.59 | 67.86% | 995.40 | 89.04% |
| 20250722 | 6.77 | 6.79 | 6.71 | 2,261.98 | 71.83% | 1,005.80 | 93.61% |
| 20250721 | 6.77 | 6.77 | 6.68 | 2,261.98 | 71.83% | 1,005.80 | 93.61% |
| 20250718 | 6.67 | 6.71 | 6.66 | 2,228.57 | 65.87% | 990.95 | 86.76% |
| 20250717 | 6.69 | 6.73 | 6.65 | 2,235.25 | 67.46% | 993.92 | 88.58% |
| 20250716 | 6.71 | 6.78 | 6.63 | 2,241.93 | 68.65% | 996.89 | 89.95% |
| 20250715 | 6.67 | 6.92 | 6.62 | 2,228.57 | 65.87% | 990.95 | 86.76% |
| 20250714 | 6.60 | 6.66 | 6.52 | 2,205.18 | 64.29% | 980.55 | 84.93% |
| 20250711 | 6.54 | 6.55 | 6.46 | 2,185.13 | 62.70% | 971.63 | 83.11% |
| 20250710 | 6.49 | 6.51 | 6.44 | 2,168.43 | 60.32% | 964.20 | 80.37% |
| 20250709 | 6.46 | 6.50 | 6.42 | 2,158.40 | 59.52% | 959.75 | 79.45% |
| 20250708 | 6.46 | 6.46 | 6.41 | 2,158.40 | 59.52% | 959.75 | 79.45% |
| 20250707 | 6.43 | 6.44 | 6.36 | 2,148.38 | 58.33% | 955.29 | 78.08% |
| 20250704 | 6.39 | 6.45 | 6.38 | 2,135.01 | 57.94% | 949.35 | 77.63% |
| 20250703 | 6.44 | 6.47 | 6.41 | 2,151.72 | 58.73% | 956.78 | 78.54% |
| 20250702 | 6.44 | 6.51 | 6.42 | 2,151.72 | 58.73% | 956.78 | 78.54% |
关于 PE 和 PE-TTM 的解释以及它们的适用范围:
1. PE (Price-to-Earnings Ratio - 市盈率)
- 定义: 市盈率是最常用的股票估值指标之一,计算公式为: PE = 每股股价 / 每股收益 (EPS)
- 含义: 它表示投资者愿意为公司每赚取一元钱的利润支付多少价格。简单来说,它反映了市场对公司盈利能力的预期以及投资回收期。
- 类型:
- 静态市盈率 (Static PE): 通常使用公司上一个完整会计年度的每股收益 (EPS) 计算。
- 动态市盈率 (Dynamic PE): 使用对公司未来(通常是下一个会计年度)每股收益的预测值来计算。
- 解释:
- 高 PE: 可能意味着市场预期该公司未来增长迅速,或者该股票被高估。
- 低 PE: 可能意味着市场预期该公司未来增长缓慢,或者该股票被低估,但也可能反映了较高的风险。
- 适用范围:
- 适用于比较同一行业内、业务模式相似的公司。不同行业的平均市盈率水平差异很大。
- 适用于盈利相对稳定的公司。对于亏损或盈利波动极大的公司,PE 可能为负数或极高/极低,失去参考意义。
- 静态 PE 简单直观,但可能滞后;动态 PE 更具前瞻性,但依赖预测的准确性。
2. PE-TTM (Price-to-Earnings Trailing Twelve Months - 滚动市盈率)
- 定义: 滚动市盈率使用公司过去连续四个季度(即过去12个月)的每股收益总和来计算。计算公式为: PE-TTM = 每股股价 / 过去12个月的每股收益总和
- 含义: 与 PE 类似,但它提供了一个更近期、更平滑的盈利视角,因为它包含了最近四个季度的业绩。
- 解释: PE-TTM 的高低含义与 PE 类似,但它更能反映公司近期的实际盈利表现。
- 适用范围:
- 普遍认为比静态 PE 更优: 因为它使用了最新的已实现盈利数据,并且通过包含四个季度的数据平滑了季节性波动和单季度的异常事件。
- 广泛应用于跨时间比较和行业比较: 由于其计算方法的标准化和及时性,PE-TTM 是进行估值分析时常用的指标。
- 对于盈利有季节性波动的公司尤其有用: 例如零售业或农业,PE-TTM 能更好地反映一个完整经营周期的盈利能力。
- 与 PE 一样,不适用于亏损公司。
总结与对比:
- 及时性: PE-TTM > 静态 PE (通常) > 动态 PE (取决于预测期)
- 稳定性: PE-TTM 通常比基于单季度 EPS 计算的 PE 更稳定。
- 常用性: PE-TTM 因其结合了及时性和稳定性,在实际投资分析中被广泛使用。
- 局限性: 两者都是基于历史盈利数据(即使 PE-TTM 相对更新),不能完全代表未来。估值时应结合其他指标(如市净率 PB、市销率 PS、股息率、现金流等)和公司的基本面(成长性、管理层、行业地位等)进行综合判断。